Home Work 04

1. Knowing that the couple shown acts in a vertical plane, determine the stress at (a) point A , (b) point B.

2. A beam of the cross section shown is extruded from an aluminum allow for which $\sigma_{y}=250 \mathrm{MPa}$ and $\sigma_{u}=450$ MPa. Using a factor of safety of 3.00, determine the largest couple that can be applied to the beam when it is bent about the z axis.

3. Two vertical forces are applied to a beam of the cross section shown. Determine the maximum tensile and compressive stresses in portion $B C$ of the beam.

4. Knowing that a beam of the cross section shown is bent about a horizontal axis and that the bending moment is 6 $\mathrm{kN}-\mathrm{m}$, determine the total force acting on the top of flange and on the shaded portion of the web.

5. Knowing that a beam of the cross section shown is bent about a horizontal axis and that the bending moment is 50 kip-in, determine the total force acting (a) on the top flange, (b) on the shaded portion of the web.

6. The beam shown is made of a nylon for
which the allowable stress is 24 MPa in tension and 30 MPa in compression. Determine the largest couple M that can be applied to the beam.
